Hi,
The equation translates into the following 5th order polynomial,
(T3-T1)*Do^5+T4*Do+T2 = 0
and hence, in principle, will have 5 solutions for Do (all real values, or
some real and some imaginary values).
You could use "Solver" to find a solution for Do (for this "Solver" add-in
should have been installed).
Enter the values of T1, T2, T3, and T4 in cells A1, A2, A3, and A4.
In a cell, say B1, enter some guess value for Do (if you have a rough idea
of what Do should be around, enter that value as the guess value; otherwise,
enter 1 and hope it works!). In B2, enter the following formula:
=(1/B1^4)*(A4+A2/B1)-A1+A3 and ENTER. Then
"Tools" --> "Solver" --> "Set Target Cell:" B2, check "Value of:" and
enter 0, "By Changing Cells:" B1 --> "Solve"
Solver will optimize the value in B1 to make B2 equal to zero (or an
extremely small value that can be deemed as zero).
If B2 doesn't become close to zero, try with a different initial guess value
in B1.
Regards,
B. R. Ramachandran